
R E F E R E E D P A P E R

NCWin — A Component Object Model (COM) for
Processing and Visualizing NetCDF Data

Jinxun Liu*1,4, Jing M. Chen1, David T. Price2 and Shuguang Liu3

1
Department of Geography and Program in Planning, University of Toronto, 100 St, George St, Room 5047,

Toronto, Ontario, Canada M5S 3G3
2

Natural Resources Canada, Canadian Forest Service, 5320–122nd St, Edmonton, AB, Canada T6H 3S5
3

SAIC, US Geological Survey, EROS Data Center, Sioux Falls, South Dakota 57198, USA
4

Research Associateship Programs, National Research Council, at USGS EROS Data Center, USA

* Corresponding author: Dr Jinxun Liu, EROS Data Center, USGS, Sioux Falls, SD 57198;

Email: jxliu@usgs.gov

NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale

atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded

with Borland Czz Builder, was built as a standard executable as well as a COM (component object model) for the

Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components).

Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN,

VISUAL BASIC, VISUAL Czz, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF

data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the

application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to

and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three

spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing

forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels;

and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF

functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of

some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint

for showing NetCDF map animations are given.

Keywords: NetCDF, COM, model reuse, visualization, data processing

INTRODUCTION

The common tasks of processing and visualizing spatial–
temporal data usually involve the use of remote sensing or
GIS software. But linking an environmental model to
remote sensing or GIS software at program code level may
be not so easy. Therefore specific spatial-temporal data
processing tools would be welcome. The Network
Common Data Form (NetCDF) is such a non-commercial
tool. NetCDF was developed in the late 1980s under a
program named Unidata supported by the American
National Science Foundation. In fact, it is a data sharing
protocol (and also a library) for storing and retrieving
scientific data in self-describing, platform-independent
files (Rew and Davis, 1990, 1997). A NetCDF data file
has information about data dimensions, variables and

attributes, and the actual data. The NetCDF library
(NetCDF Version 3, 1997) has about 140 C functions
(interfaces) that can be called to create, modify, read and
write NetCDF data. NetCDF was primarily intended for
atmospheric related research such as climate change
(Benestad, 2000), but now it has become a commonly
accepted means of data sharing and processing. Many
research programs use NetCDF as a data interface for their
models. Examples include some large-scale terrestrial
ecosystem simulators, such as IBIS (Foely et al., 1996;
Kucharik et al., 2000), SiB2 (Schuber et al., 1995; Berry
et al., 1997), VEMAP (Kittel et al., 1997, 2000; Schimel
et al., 1997), and the newer version of CENTURY model
developed by Parton et al. (1987). However, most current
NetCDF tools are for the Unix system while NetCDF tools
for Windows are few and usually commercial. A simple list

The Cartographic Journal Vol. 42 No. 1 pp. 69–77 June 2005
The British Cartographic Society 2005

DOI: 10.1179/000870405X57301

of software that manipulating or displaying NetCDF data
can be found at Unidata’s website (http://www.unidata.
ucar.edu/packages/netcdf/software.html). Because nowa-
days many people do spatial-temporal modeling work
under the Windows environment, it is beneficial to provide
an integrated NetCDF tool for the Windows environment.
This paper presents a Windows NetCDF tool (named
NCWin) that includes a NetCDF modeling interface, a data
conversion component and a data visualization component.

The NCWin is developed not only as a standard
executable, but also a Component Object Model (COM)
mainly for the purpose of model reuse. The COM and the
related Distributed COM (DCOM), COMz, and the new
component initiative .NET are the Microsoft technological
proposals for developing component-based software. COM
is a specification for defining an object that can be used
across applications and languages (Rogerson, 1997;
Reisdorph, 1999). So, COM based NCWin can be reused
or invoked by other applications or modeling programs.
COM in environmental modeling has already been
discussed (Smith, 1997; Potter et al., 2000, Liu et al.,
2002). Potter et al. (2000) pointed out that an ideal forest
ecosystem management decision support system takes
advantage of the combined capability of many available
systems working together and that COM is currently the
most suitable technology for model reuse. NCWin poten-
tially can be incorporated into various environmental
models that might facilitate data processing, data evaluation
and data sharing. Basically, the descriptions here apply to
general model reuse and COM based environmental
modeling. Examples of calling NCWin for map animations
within other software and some example code about using
NCWin in environmental model simulation were given.

MODEL REUSE AND COM ADVANTAGES

The Concept of Component Model

The concept of a component model is that it can be
assembled with reusable model components. Dynamic

models of environmental and biological systems often have
common components that usually represent a specific
aspect or functionality of the system. These components
are fully functional units that may be provided by different
model developers and in different disciplines. A reusable
component can be considered a black box with input and
output interfaces that bear standard universal structures so
that they can be accessed by other programmes. These
components can be assembled into a model framework to
perform broader, complicated jobs. And these components
are interchangeable, i.e. they can be replaced by similar
components depending on how the user wants to
customize the model. As shown in Figure 1, various
existing parent models potentially can provide stand-alone
model functional parts. After some specified recoding or
modification, the related functional parts can be built with
standard interfaces and become reusable model compo-
nents. These reusable components form a resource that is
available for creating customized simulation models.
Different components may come from a same parent model
and different models may provide similar components,
which have different internal structures and calculations but
perform the same functionality. Obviously, model reuse
allows the creation of better models.

COM as Reusable Model Components

Reusing model components is also termed as component
technology, which is an extension of object-oriented
software technology that focuses on the issues of software
interoperability and re-use (Kohn et al., 2000; Szyperski,
2002). Information about the three common component
technology standards, COM, JavaBeans and CORBA, are
available from various resources (Epperly et al., 2000).
JavaBeans has been developed by the Sun Microsystems
that focus on web-based component technology. CORBA,
developed by the Object Management Group (OMG), is a
cross-platform distributed object specification that supports
the interaction of complex objects written in different
programming languages and distributed across a network
of computers. COM is the Microsoft’s component

Figure 1. The concept of building
a customized model system with
reusable model components

70 The Cartographic Journal

http://www.unidata.ucar.edu/packages/netcdf/software.html
http://www.unidata.ucar.edu/packages/netcdf/software.html

standard that forms the basis for interoperability
among all Windows-based applications. It has been
evolved to DCOM, COMz and also formed the bases
of the .NET that combines Java technology to build large
web applications from small building-block applications
(http://www.microsoft.com/net/basics).

COMs are relatively independent and fully functional
binaries that can do certain jobs as standard executables do.
Its function is usually more specific than a normal
integrated modeling system. For example, it can be a sub-
model of a modeling system, such as a data processing
utility that deals with model input and output, or as in a
vegetation model, it can be a sub-model for calculating
photosynthesis or a sub-model of calculating tree mortality.
COMs are language independent, which means they can be
used by various programming languages. The concept of
using a COM is that a client programme (environmental
model) can activate and establish communications with a
COM server and then control the server (Figure 2).

The connection between the client and the server uses
the interfaces defined by the COM. When the server is
activated by the client it exposes various interfaces for the
client to use. Because the client already knows what
interfaces the server has and knows how to call the interface
functions, it can pass data and parameters to the server. The
server will do the required job using its internal functions
and output the results. (If the client doesn’t have enough
information about the COM, it can query the COM via
special interface to get them.) The server can also send out
signals telling the client that certain jobs have been finished.
In such conditions, the client needs to install COM
interfaces in order to get feedbacks from the COM server.

Using a COM is different than using an executable. At
least, calling an executable is usually invoking the whole of
the application and the user has to go through the processes
fixed by the application, which is usually slow in speed and
consumes considerable computer memory. Calling a COM
is like using a back door of a programme, and the user can
directly focus on the required functional part. An example
of COM product is the ESRI MapObject. Unlike the
ArcView application, MapObject is provided for GIS
modelers who want to build customized GIS applications
by themselves. For instance, the user can call MapObject’s
functions to edit and display maps directly in his own
program window. Another common example is Microsoft
Excel, which is an executable, but also a COM server that
bears many COM interfaces and functions. When a user
wants to put some data and draw a chart into an Excel file,

directly from his own programme, he can use the COM
technology without the need to open Excel as people
normally do.

Sharing a COM is also different than sharing the program
source code. Most environmental modelers are hesitant in
sharing their source codes. But with COM they can share
their models by only providing the functionality, without
source codes.

The complexity of COM processes includes querying
interfaces, passing parameters and data references, firing
and sinking events, thread synchronizing, and even cross
network proxy. Much information about COM can be
found from books (Rogerson, 1997) and the Internet
(http://www.microsoft.com/com/).

NCWIN COMPONENTS AND FUNCTIONS

NCWin is designed to do three major tasks: modeling, data
conversion and data visualization. These three tasks are
performed with three COM components each has one or
more COM interfaces for use by other programs (Figure 3).
These COMs were built upon the original Unidata
NetCDF library and provided some integrated NetCDF
function that simplified NetCDF data processing.

NCWin Modeling Component

This component makes it possible that a client model can
create, read and write NetCDF files while the client model
is running. This task is done by using COM-based NetCDF
functions that call functions of the original NetCDF library
provided by Unidata. Currently there are seven COM
NetCDF functions for the client to use. Most of them
contain multiple original NetCDF functions:

N NCCreate — Create a NetCDF file with all dimensions

defined and assigned;

N NCClose — Close an opened NetCDF file;

N NCVariable — Define a new NetCDF variable with

dimensions;

N NCAttributes — Add proper attributes to dimensions

and variables;

N NCRead — Read data from a NetCDF file;

N NCWrite — Write data to a NetCDF file;

N GetNCInfo — Get all information from a NetCDF file.

Figure 2. Client and Server communication through a COM
interface

Figure 3. NCWin COM components

A Model for Processing and Visualizing NetCDF Data 71

http://www.microsoft.com/net/basics
http://www.microsoft.com/com/

Although there are about 140 functions defined by the
original NetCDF library that give maximum control of
NetCDF data, the above COM functions are simple and
practical for dealing with normal NetCDF file processing in
a user’s program. It is possible to convert all the original
NetCDF functions into the COM format so that the same
COM library can be used with different programming
languages.

The NCWin type library was created at the time
NCWin COM was built, which contains all the
information of NCWin. Using NCWin in environmental
model one needs to register NCWin, imports the type
library, modify data read and write routines, and possibly
want to add visual controls (such as buttons and data
windows).

If a client model needs to use the NCWin library, it will
create a NCWin COM instance when the client model is
running. If the client wants to create a NetCDF file and
write data to it, the client first needs to prepare related
information such as the file name, variable name, data
dimension size, variable value vector, etc. Then the client
can call NCWin’s COM functions as follows:

ClientFunction(){
NCCreate (file name, dimensions, …);
NCVariable (variable name, variable dimensions, …);
NCAttributes (variable name, attribute, …);
NCWrite (variable name, variable value, …);
NCClose (file name);
}
The COM functions in turn call original NetCDF
functions. For example, the NCCreate (…) function
actually includes multiple calls:
NCCreate(…){
nc_create(…); //create new NC file with a given
name;
def_dim(…); //define dimensions, usually 4D;
nc_enddef(…); //change file to data mode so as to
read or write data
put_var(…); //assign values to each dimension;
}

Since the parameters are already provided when the client
calls the COM functions, the user does not need to worry
about calling the original NetCDF functions. This is a way
of simplifying the NetCDF usage.

Data Conversion Component

This component mainly converts raw data to and from
NetCDF data. Unlike the modeling interface, it is basically
for use outside a model simulation process. Raw data
here means temporal-spatial data without additional
information (such as a header). If the data dimensions
and data types are known, the conversion is quite
simple. The user can add other necessary attribute
information to the file easily. Major conversions tasks
include:

Data Type and Geo-format Conversion

The conversion component can convert data among six
types (unsigned char, signed char, short, int, float, double).

A simple mechanism for checking the file size, dimension
size and date type size secures the conversion process, and
will notify the user when there is a mismatch on the size
requirement. The geo-format (BIP, BIL, BSQ) conversion
rearranges binary data according to their dimensions. But a
NetCDF file is ‘always’ in BSQ format in this COM, i.e. all
NetCDF map series are stored frame by frame in
computer’s physical memory. Functions in this part include
Dat2NC, NC2Dat and Dat2Dat. Some special ASCII file
conversions are also included.

Data Aggregation

NetCDF map can be scaled up in order to reduce the
file size. In this process a new pixel will be an area-
weighted product from the original pixels. For example,
if we scale a map by a factor of 10 (merge 10 units along
both latitude and longitude dimensions), then one
new pixel will contain 100 old pixels. Suppose we are
dealing with a land mask map, if the original land pixels
are more than half of the total 100 pixels, this new pixel
will be a land pixel. The percentage of actual land area to
the total area is also stored as sub-pixel information for
potential use.

Other capabilities are provided such as adding new
variables to an existing NetCDF file, clipping a subset of
data, converting 3-dimensional data array to 4-dimensional
data array, adding missing values, scale factor, offset
and adding maximum and minimum values. Data dimen-
sions here are NetCDF defined dimensions. 1-dimensional
data usually stores a time series of a scalar or variables
such as x and y coordinates. Two-dimensional data
commonly means one frame of map or image defined by
x, y coordinates. Three-dimensional data is mostly used
for map series. Four-dimensional data is usually a series of
map series.

The whole data conversion component is a COM unit
that contains a dialog window. The related conversion
functions can also be called directly through their own
COM functions that do not require opening the dialog
window.

Figure 4 shows the NCWin file conversion dialog
window. Most of the background functions are from the
modeling interface and original NetCDF library. The above
portion of the window is for conversion types, which will
lead to further selections. The dimension panel and the
variable panel display dimension and variable information,
respectively.

When NC2Dat is chosen, a GetInfo() function will
extract all the information of a NetCDF file. Important
information will be directly displayed in the window’s
related fields. Complete information can be displayed by
clicking the ‘More’ button. When Dat2NC is chosen, the
user is assumed to provide the interested variable name and
its dimensions, as well as other information such as the
missing value and the scale factor. Information provided
from the dialog window is limited. The user can add more
attributes to a NetCDF file using the background COM
function instead of the dialog window. When Dat2Dat is
chosen, the user can either change data types between six
options (unsigned char, signed char, short, int, float,
double) or change geo-formats between three options

72 The Cartographic Journal

(BIP, BIL, BSQ). In using a combination of these
functions, the user can freely change data between many
sizes, types and formats. In addition, there is an ASCII file
conversion that provides several kinds of ASCII to binary
data conversions.

Data Visualization Component

The NCWin data visualization component stores multi-
dimensional NetCDF data arrays in physical memory. It
also creates blank map frames in the memory when opening
the NetCDF data file. To display the data as maps it first
converts data to RGB pseudo color and writes to the map
frames. Then it displays the map frames with fast refresh
rate. NCWin uses a 4-byte hexadecimal number to
represent a color (defined as the TColor type in the
Borland Czz Builder). The low three bytes represent
RGB color intensities for blue, green, and red, respectively.
The value 0x00FF0000 represents full-intensity, pure blue,
0x0000FF00 is pure green, and 0x000000FF is pure red.
0x00000000 is black and 0x00FFFFFF is white. The
integer range of each byte is 0,255.

The conversion algorithm of data values (grey scales) to
colors is simplified from the Hue-Saturation-Value model
created by A. R. Smith (1978). The data range is divided

into four sections from minimum to maximum based on
the Hue (Figure 5). In each section the actual data value is
linearly converted to a relative value (0-255), which drives
the color intensity on one of the RGB bands with the
other two bands remain constant (one is 0, and another is
255). The RGB values of the whole data range form a
continuous spectrum (O of the colour wheel) with
blue representing the lowest data value and red represent-
ing the highest data value.

The Visulization component is a standalone module with
two displaying windows:

Map Display

The NetCDF map window (Figure 6) can display 2–
3-dimensional data as maps. Displaying 3-dimensional
map is doing map animation. It is not a topographic 3D
view of an image. Displaying 4-dimensional data as maps is
not implemented. Some combo boxes and speed buttons
on the tool bar can control the display such as selecting the
animation speed and changing the display direction
(forward and backward). The status bar displays the cursor
location and the variable value at that location. A simple
map legend can be placed on the right side of the window,
which can be using the default or manually customized.

Figure 4. NCWin file conversion window

A Model for Processing and Visualizing NetCDF Data 73

Figure 6. The NCWin map display window

Figure 5. Grey scale to RGB
pseudo coloer conversion in
NCWin

74 The Cartographic Journal

Curve Display

Double clicking an on-site map pixel will pop up a trend
display window that concerns the 1-dimensinal data. It is the
time series of a pixel’s value. The window can display up to
nine curves with their location displayed on the legend
(Figure 7).

USING NCWIN WITH OTHER SOFTWARE AND MODELS

As mentioned before, COM based NCWin can be called by
other programs. This is very useful to environmental
modelers. For visualization and analytical purposes, a
modeler can visually inspect the input and output data,
easily handle data processing, and efficiently evaluate and
improve the model. It also promotes better data sharing
and model presentations.

The NCWin COMs are dynamic linking libraries (DLL).
To use the DLLs one can register them using the Borland
Czz Builder’s IDE or run the RegSvr32.exe programme,
which is a standard Windows utility for registering and
unregistering servers and type libraries. At the time of
creating a COM server, a type library (.TLB file) is also
created. Type libraries provide needed information about
COM objects and their interfaces, such as what interfaces
exist on what COM objects, what member functions exist
on each interface, and what arguments those functions
require. Sometimes the type library needs to be distributed
with the COM server (.dll, .ocx, .exe). And the way of
registering, importing and accessing a COM object vary
depending on different programming languages.

Here we provide two examples of using NCWin
with other software. The first example is the ArcGIS 9.
ArcGIS 9 can evoke a map animation or data conversion
with NCWin because it can be programmed with

Visual Basic. Figure 8 shows a way of using the map
display component (NCMap.dll) of NCWin, which needs
only two lines of VBA code. Detail steps are listed in the
Appendix A.

Evoking modelling interface and data conversion com-
ponent is the same. In ArcGIS one can also use Python
script to wrap the COM and make it available as a tool
for command line execution. The second example is
using MS PowerPoint to call NCMap.dll for map anima-
tions. Similar steps as the ArcGIS example are listed in
Appendix B.

Adding NCWin to an existing environmental model is
not difficult. For example, changing data interface to
NetCDF in the InTEC model (Chen et al., 2000), where
an old set of 1 km61 km resolution, 100 year climate
coverages was replaced with a new set of 10 km610 km
NetCDF maps, only hundreds of lines of code modification
were needed. Then it gave the benefit of reducing the size
of climate data file and viewing the input and output data at
a greater convenience.

CONCLUSIONS

Reusing existing model components allows better model
development. Although using NetCDF in environmental
modeling is optional to modelers, applications such as
NCWin will attract more modelers to the use of NetCDF.
It will bring much convenience for those who want to
bridge model development, data processing and GIS
software. It will also make data sharing and date presenta-
tion more convenient. However, it should be noticed
that calling a COM function is usually slower than calling
an internal function defined by a modeler’s specific
programming language. There are different NetCDF

Figure 7. The NCWin trends
display window

A Model for Processing and Visualizing NetCDF Data 75

libraries for Java, Fortran, Visual Czz and Borland Czz

that can be considered by users. NCWin’s language-neutral
modeling interface is mainly for model reuse where the user
does not need to program NetCDF functions or the user
likes to use NCWin’s macro modeling functions instead of
the original Unidata NetCDF functions. As an application,
the NCWin should be considered a developing project.
More features can be added to this application such as map
display scaling, more color schemes, and additional
statistical functions. NCWin is currently built as an in-
process COM. But creating an out-process COM that can
be used across different machines is just a step away in the
near future. Potential users should note that the Unidata
NetCDF library is also subject to change. Li et al. (2003)
developed a parallel NetCDF library that advanced the old
serial NetCDF file processing technology and made
NetCDF more efficient, powerful and flexible. For this
NCWin application interested users can contact the authors
for a free copy.

ACKNOWLEDGEMENT

We gratefully acknowledge the financial supports for
this study that was provided by the University of
Toronto, the Canadian Forest Service and the Research
Associateship Programs of the US National Research
Council via an agreement with US Geological Survey. We
thank Marty Thorne for his early contributions on
the prototype of map display and the basic 32-bit RGB
color algorithm. We also thank Lowell Johnson, Bruce
Worstell, Gregg Johnson as well as three anonymous
reviewers and the editor for their very valuable comments
and suggestions.

REFERENCES

Benestad, R. E. (2000). ‘Fifteen Global Climate Scenarios: conversion
to NetCDF and inter-comparison (RegClim)’, DNMI-Report
16/00 KLIMA, pp. 35.

Berry, J. A., Collatz, G. J., Denning, A. S., Colello, G. D., Fu, W.,
Grivet, C., Sellers, P. J. and Randall, D. A. (1997). ‘SiB2, a model
for simulation of biological processes within a climate model’, in
Scaling Up, ed. by Van Gardingen, P, Moody, G. and Curran, P.,
pp. 347–70, Society for Experimental Biology, Cambridge
University Press, Cambridge.

Chen, J. M., Chen, W., Liu, J., Cihlar, J. (2000). ‘Annual carbon
balance of Canada’s forests during 1895–1996’, Global
Biogeochemical Cycles, 14, 839–49.

Epperly, T, Kohn, S, Kumfert, G. (2000). ‘Component Technology
for High-Performance Scientific Simulation Software’. Report
UCRL-JC-140549. US Department of Energy.

Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D.,
Sitch, S. and Haxeltine, A. (1996). ‘An integrated biosphere model
of land surface processes, terrestrial carbon balance, and vegetation
dynamics’, Global Biogeochemical Cycles, 10, 603–28.

Kittel, T. G. F., Royle, J. A., Daly, C., Rosenbloom, N. A., Gibson,
W. P., Fisher, H. H., Schimel, D. S., Berliner, L. M. and VEMAP2
Participants (1997). ‘A gridded historical (1895–1993) bioclimate
dataset for the conterminous United States’, in Proceedings of
the 10th Conference on Applied Climatology, American
Meteorological Society, Boston.

Kittel, T. G. F., Rosenbloom, N. A., Kaufman, C., Royle, J. A., Daly,
C., Fisher, H. H., Gibson, W. P., Aulenbach, S., McKeown, R.,
Schimel, D. S., and VEMAP2 Participants (2000). ‘VEMAP Phase
2 Historical and Future Scenario Climate Database’. Available
online at http://www-eosdis.ornl.gov/ from the ORNL
Distributed Active Archive Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA.

Kohn, S., Gannon, D., Dykman, N., Kumfert, G. and Smolinski, B.
(2000). ‘Scientific Software Component Technology’, LDRD ERD
FY99 Final Report (99-ERD-087), US Department of Energy.

Kucharik, C. J., Foley, J. A.. Delire, C., Fisher, V. A., Coe, M. T.,
Lenters, J., Young-Molling, C., Ramankutty, N., Norman, J. M.
and Gower S. T. (2000). ‘Testing the performance of a dynamic
global ecosystem model: Water balance, carbon balance and

Figure 8. Invoking NCMap
COM Server in ArcGIS 9
using Visual Basic

76 The Cartographic Journal

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0886-6236()14L.839[aid=6722658]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0886-6236()14L.839[aid=6722658]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0886-6236()10L.603[aid=9438]
http://www-eosdis.ornl.gov/

vegetation structure’, Global Biogeochemical Cycles, 14,
795–825.

Li, J., Liao, W., Choudhary, A., Ross, R., Thakur, R., Gropp, W.,
Latham, R., Siegel, A., Gallagher, B. and Zingale, M. (2003).
‘Parallel netCDF: A Scientific High-Performance I/O Interface’, in
Proceedings of ACM/IEEE Supercomputing Conference
(SC2003), Phoenix, Arizona.

Liu J., Peng, C., Dang, Q., Apps, M. and Jiang, H. (2002). ‘A
component object model strategy for reusing ecosystem models’,
Computers and Electronics in Agriculture, 35, 17–33

Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. (1987).
‘Analysis of factors controlling soil organic matter levels in Great
Plains grasslands’, Soil Science Society of America Journal, 51,
1173–79.

Potter, W. D., Liu, S., Deng, X. Rauscher, H. M. (2000). ‘Using
DCOM to support interoperability in forest ecosystem manage-
ment decision support systems’, Computers and Electronics in
Agriculture, 27, 335–354.

Rew, R. K. and Davis, G. P. (1990). ‘The Unidata netCDF: Software
for Scientific Data Access’, Proceedings of the Sixth
International Conference on Interactive Information and
Processing Systems for Meteorology, Oceanography and
Hydrology, Anaheim, California.

Rew, R. K. and Davis, G. P. (1997). ‘Unidata’s netCDF Interface
for Data Access: Status and Plans’, Proceedings of the
Thirteenth International Conference on Interactive
Information and Processing Systems for Meteorology,
Oceanography and Hydrology, Long Beach, California.

Reisdorph, K. (1999). BORLAND Czz BUILDER 4 Unleashed,
SAMS Publishing, 1223 pp.

Rogerson, D. (1997). Inside COM, Microsoft Press, Redmond, WA,
376 pp.

Schimel, D. S., VEMAP Participants and Braswell, B. H. (1997). ‘Con-
tinental scale variability in ecosystem processes: Models, data, and
the role of disturbance’, Ecological Monographs, 67, 251–71.

Schuber S., Park, C.-K., Wu, C.-Y., Higgis, W., Kondratyeva, Y.,
Molod, A., Takacs, L., Seablom, M. and Rood, R. (1995). ‘A
MultiYear Assimilation woth the GEOS-I System: Overwiev and
Results’, NASA Technical memorandum 104606, vol. 6. 207 pp.

Smith, A. R., (1978). ‘Color Gamut Transform Pairs’, Computer
Graphics, 12 (SIGGRAPH 78 Conference Proceedings).
Reprinted in Tutorial: Computer Graphics, ed. by Beatty, J. C.
and Booth, K. S., pp. 376–83, IEEE Computer Society Press,
Silver Spring, MD, 2nd edition, 1982.

Smith, W. R. (1997). ‘Model reuse and integration’, in Proceedings of
the IUFRO Conference: Empirical and Process-Based Models for
Forest Tree and Stand Growth Simulation, Oerias, Portugal.

Szyperski, C., Gruntz, D. and Murer, S. (2002). Component
Software — Beyond Object-Oriented Programming, 2nd edn,
Addison-Wesley/ACM Press, 589 pp.

APPENDIX A

Steps of using NCMap.dll in ArcGIS 9:

1. Open a Command window and go to the NCWin
files directory. Register NCMap.dll by typing the

command ‘regsvr32.exe NCMap.dll’. Windows will
prompt a message of successful registration.

2. Open ArcMap in ArcGIS. On menu bar select
‘Tool/Customize/Toolbars/New’ to create a new
toolbar.

3. In the same ‘Customize’ window select ‘Commands/
UIControls/New UIControl/ UIButtonControl/
Create’ to create a new button and drag it to the
toolbar just created in step (2).

4. Right click the button to open a selection menu and
go to the bottom to select ‘View Source’. This goes
into the VBA programming mode.

5. Right click on the coding area or press F2 to bring
up the Object browser and right click the browser
to open the VB References Dialog. Find the
COM library ‘NCMap Library’ in the ‘Available
References’ list, select it, and click the OK button.

6. In the UIButtonControl1_Click() subroutine,
put two lines as shown in Figure 8. Compile and
save.

7. When click the button in the ArcGIS main Window, a
COM object ‘NCMapObj’ will be created and the
NCMap window will show the map animation as
desired.

APPENDIX B

Steps of using NCMap.dll in MS PowerPoint:

1. Register the NCMap.dll as described in Appendix A,
step 1.

2. Open a blank MS PowerPoint slide. From the menu
bar select ‘View/Toolbars/ Control Toolbox’ to open
the Control Toolbox. Select a command button and
draw the button onto the slide (default name is
CommandButton1).

3. Right click the button to open a selection menu and
select ‘View Code’. This goes into the VBA program-
ming mode and the default subroutine name is
‘CommandButton1_Click()’.

4. Get the NCMap Library Reference as described in
Appendix A, step 5.

5. In the CommandButton1_Click() subroutine, put two
lines as shown in Figure 8. Compile and save.

6. When in presentation mode, a click on the button will
bring the NCMap window and shows the map
animation as desired. After closing the NCMap
window, the Power Point presentation continues.

A Model for Processing and Visualizing NetCDF Data 77

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0168-1699()35L.17[aid=6722657]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0886-6236()14L.795[aid=5661826]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0886-6236()14L.795[aid=5661826]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0361-5995()51L.1173[aid=7464]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0361-5995()51L.1173[aid=7464]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0168-1699()27L.335[aid=6722656]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0168-1699()27L.335[aid=6722656]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0012-9615()67L.251[aid=6722655]

